TermMax Docs
Term Structure Docs
TermMax Docs
More
Ask or Search
Ctrl + K
Definition (D)
Previous
Notation (N)
Next
AMM Curve (C)
Last updated
8 hours ago
Time Ratio (
θ
\theta
θ
)
θ
:
=
d
D
T
M
365
(Eq. D-1)
\theta := \frac{d_{DTM}}{365} \text{ (Eq. D-1)}
θ
:=
365
d
D
TM
(Eq. D-1)
Price
p
f
t
:
=
1
1
+
r
θ
(Eq. D-2)
p_{ft} := \frac{1}{1+r\theta} \text{ (Eq. D-2)}
p
f
t
:=
1
+
r
θ
1
(Eq. D-2)
p
x
t
=
p
u
n
d
e
r
l
y
i
n
g
−
ε
p
f
t
=
1
−
ε
1
+
r
θ
∵
ε
p
f
t
+
p
x
t
:
=
p
u
n
d
e
r
l
y
i
n
g
=
1
(Eq. D-3)
p_{xt} = p_{underlying} - \varepsilon p_{ft} = 1 - \frac{\varepsilon}{1+r\theta} \\ \because \varepsilon p_{ft} + p_{xt} := p_{underlying} = 1 \text{ (Eq. D-3)}
p
x
t
=
p
u
n
d
er
l
y
in
g
−
ε
p
f
t
=
1
−
1
+
r
θ
ε
∵
ε
p
f
t
+
p
x
t
:=
p
u
n
d
er
l
y
in
g
=
1
(Eq. D-3)
P
:
=
R
ˆ
y
(virtual XT reserve)
R
ˆ
x
(virtual FT reserve)
=
p
f
t
p
x
t
=
1
1
+
r
θ
1
−
ε
1
+
r
θ
=
1
1
+
r
θ
−
ε
(Eq. D-4)
P := \frac{\^R_{y} \text{ (virtual XT reserve)}}{\^R_{x} \text{ (virtual FT reserve)}} = \frac{p_{ft}}{p_{xt}} = \frac{\frac{1}{1+r\theta}}{1 - \frac{\varepsilon}{1+r\theta}} = \frac{1}{1 + r \theta - \varepsilon} \text{ (Eq. D-4)}
P
:=
R
ˆ
x
(virtual FT reserve)
R
ˆ
y
(virtual XT reserve)
=
p
x
t
p
f
t
=
1
−
1
+
r
θ
ε
1
+
r
θ
1
=
1
+
r
θ
−
ε
1
(Eq. D-4)
APR (Annual Percentage Rate)
r
=
1
P
+
ε
−
1
θ
=
R
ˆ
x
R
ˆ
y
+
ε
−
1
θ
(Eq. D-5)
r=\frac{\frac{1}{P}+\varepsilon-1}{\theta}=\frac{\frac{\^R_x}{\^R_y}+\varepsilon-1}{\theta} \text{ (Eq. D-5)}
r
=
θ
P
1
+
ε
−
1
=
θ
R
ˆ
y
R
ˆ
x
+
ε
−
1
(Eq. D-5)
N
r
D
r
=
1
P
+
N
ε
D
ε
−
1
d
D
T
M
365
=
R
ˆ
x
R
ˆ
y
+
N
ε
D
ε
−
1
d
D
T
M
365
=
365
(
R
ˆ
x
+
N
ε
D
ε
R
ˆ
y
−
R
ˆ
y
)
d
D
T
M
×
R
ˆ
y
=
365
(
D
ε
R
ˆ
x
+
N
ε
R
ˆ
y
−
D
ε
R
ˆ
y
)
D
ε
d
D
T
M
R
ˆ
y
⇒
N
r
=
365
D
r
(
D
ε
R
ˆ
x
+
N
ε
R
ˆ
y
)
−
365
D
r
D
ε
R
ˆ
y
D
ε
d
D
T
M
R
ˆ
y
(Eq.D-6)
\begin{align*} \frac{N_r}{D_r} & = \frac{\frac{1}{P}+\frac{N_{\varepsilon}}{D_{\varepsilon}}-1}{\frac{d_{DTM}}{365}} \\ & = \frac{\frac{\^R_x}{\^R_y}+\frac{N_{\varepsilon}}{D_{\varepsilon}}-1}{\frac{d_{DTM}}{365}} \\ & = \frac{365 (\^R_x+\frac{N_{\varepsilon}}{D_{\varepsilon}} \^R_y-\^R_y)}{d_{DTM} \times \^R_y} \\ & = \frac{365 (D_{\varepsilon} \^R_x + N_{\varepsilon} \^R_y - D_{\varepsilon}\^R_y)}{D_{\varepsilon} d_{DTM} \^R_y} \\ \Rightarrow N_r & = \frac{365 D_r (D_{\varepsilon} \^R_x + N_{\varepsilon} \^R_y) - 365 D_r D_{\varepsilon}\^R_y}{D_{\varepsilon} d_{DTM} \^R_y} \text{ (Eq.D-6)} \end{align*}
D
r
N
r
⇒
N
r
=
365
d
D
TM
P
1
+
D
ε
N
ε
−
1
=
365
d
D
TM
R
ˆ
y
R
ˆ
x
+
D
ε
N
ε
−
1
=
d
D
TM
×
R
ˆ
y
365
(
R
ˆ
x
+
D
ε
N
ε
R
ˆ
y
−
R
ˆ
y
)
=
D
ε
d
D
TM
R
ˆ
y
365
(
D
ε
R
ˆ
x
+
N
ε
R
ˆ
y
−
D
ε
R
ˆ
y
)
=
D
ε
d
D
TM
R
ˆ
y
365
D
r
(
D
ε
R
ˆ
x
+
N
ε
R
ˆ
y
)
−
365
D
r
D
ε
R
ˆ
y
(Eq.D-6)